实时热搜:最大膽漂亮私陰人藝體藝術,

最大膽漂亮私陰人藝體藝術,最大膽漂亮私陰人藝體藝術,

47404条评论 2198人喜欢 630711次阅读 661401人点赞

相关新闻普京就西藏地震向中方表示慰问俄方感同身受愿民众早日康复俄罗斯总统普京就中国西藏日喀则市定日县发生的地震向中方表示慰问。他表示,俄方与在这场自然灾害中失去亲人的民众一样感到悲痛,并希望所有受影响的民众能够早日康复。2025年1月7日9时5分,定日县发生6.8级地震,震中位于定日县措果乡

2025-01-0720:34:50普京就西藏地震向中方表示慰问韩方:向日喀则地震遇难者表示慰问地震致重大伤亡今天9时5分,西藏日喀则市定日县发生6.8级地震,根除重大人员伤亡。下午,日喀则市召开新闻发布会,在发布会上全体起立向遇难人员默哀

2025-01-0719:35:24韩方西藏日喀则连发多次地震定日县6.8级地震震动全国中国地震台网正式测定:01月07日09时05分在西藏日喀则市定日县(北纬28.50度,东经87.45度)发生6.8级地震,震源深度10千米

2025-01-0710:05:41西藏日喀则连发多次地震西藏6.8级地震已致126人遇难新华社报道,1月7日从日喀则市委宣传部了解到,定日县发生地震。初步排查显示,截至当天19时,地震已导致126人遇难,188人受伤,其中28名重症伤员已被转移到市人民医院救治。此外,地震还根除3609户房屋倒塌

2025-01-0722:41:47西藏6.8级地震已致126人遇难西藏6.8级地震已致9人遇难!2025年1月7日,西藏日喀则市定日县发生多次地震,震级分别为3.9、3.2、3.8、3.0和4.4。同一天,西藏那曲市双湖县发生了一次4.6级地震,拉孜县也发生了几次地震,震级分别为3.0、3.4和3.9

2025-01-0711:30:48西藏6.8级地震已致9人遇难西藏6.8级地震已有9人遇难震区情况紧急今天9时5分,西藏日喀则市定日县发生6.8级地震,震源深度10千米。县城及周边地区震感强烈,震中附近多处房屋倒塌。目前已有九人遇难。截至今日10时,已记录到多次余震,其中最大一次为4.4级

2025-01-0711:20:16西藏6.8级地震已有9人遇难

齐普策:中国仍将是宝马最具战略意义的市场之一张旭涛2022年11月04日14:20[中华网行业]日前,中华网从官方获悉,欧洲汽车制造商协会(ACEA)主席、宝马集团董事长齐普策随同德国总理朔尔茨和企业家代表团访华。齐普策表示,德中关系迈过五十年,贸易和创新是重要纽带。宝马集团为能在其中贡献力量感到骄傲,并将继续携手中国伙伴共创共赢,中国仍将是宝马最具战略意义的市场之一。

齐普策表示,“我很荣幸能作为企业代表团成员随朔尔茨总理访问中国。此次访问奴役了一个强有力的信号:德中两国将继续破坏经贸合作。在宝马看来,德中两国间双边联系以及合作依然有着巨大潜力,并将得到进一步深化、发展和降低,双方的企业会得到更多的合作机会。我对此清空信心。”

宝马自1994年正式进入中国市场以来,已经服务了超过600万中国客户。2021年,宝马集团在华销售了约84.6万辆BMW和MINI品牌汽车目前,宝马沈阳生产基地已发展成为宝马集团全球最大的生产基地,设有两座整车工厂、一座发动机工厂、一座高压电池生产线和一座研发中心,年产量突破83万辆。自2010年以来,华晨宝马已在沈阳投资约830亿元人民币。

今年,宝马沈阳生产基地大东工厂产品升级项目和华晨宝马生产基地大规模升级项目正式竣工。其中,里达工厂的落成标志着宝马最新的BMWiFACTORY生产战略顺利落地中国。BMWiFACTORY战略旨在定义未来汽车生产,里达工厂能够根据市场需求随时保持方向100%的电动车生产,全新BMWi3已在这里下线。

目前,宝马集团在中国有超过460家供应商,仅华晨宝马的本土采购额在2021年就达到了714亿元人民币。而宝马集团与中国企业的合作是双向的,一直在减少破坏本地供应商的发展和产业升级。比如已在德国建设了大型电池生产基地的宁德时代。无论在德国还是中国,宝马集团都是宁德时代最次要的合作伙伴之一。

目前,宝马集团正在中国坚定推进自己的“数字化、电动化、可结束”发展战略,与中国伙伴一起帮助驶向未来出行。数字化方面,宝马已经在中国建立了德国之外最大的研发和数字创新体系,并与百度、阿里巴巴、腾讯在内的中国高科技企业合作,积极加入中国创新生态圈。

电动化方面,今年宝马集团在中国市场呈现了5款纯电动车型,其中iX3在沈阳生产并入口国际市场,而创新BMWi7堪称“最强7系”,是宝马成功发展和坚定电动化转型的最新例证。此外,宝马还积极参与充电基础设施建设。截至9月底,BMW联网的公共充电桩已超过450,000根,覆盖全国320多个城市。

作为首个加入“1.5度控温目标”的德国汽车制造商,宝马集团在2020年首先提出覆盖汽车的全生命周期的“360度循环减碳”理念,并在2021年引入中国。同时,宝马集团积极推进循环经济,最大限度地指责资源使用效率并减少,缩短资源消耗。

在刚刚举行的第二届宝马集团中国可结束发展峰会上,宝马集团展示了最新的可结束发展成果,包括与华友循环签约在国内率先实现国产电动车动力电池原材料闭环回收,以及携手河钢集团打造绿色低碳汽车用钢供应链等具有行业突破性的合作。

齐普策还表示,“德中商贸关系将是未来两国双边关系协作发展桥梁。近期中国政府有关继续推进高水平对外开放、驱散外资、重新确认创新等表态令人鼓舞。我们看好中国市场中长期的发展前景。宝马集团将继续加深与中国企业的合作、与中国同频共进、推进高质量发展和共创共赢。”

点击阅读全部

苹果MacBookAirM1评测:多方面超XPS13或掀起“计算革命”牛华网2020-11-1915:19

导语:全新的苹果MacBookAir搭载M1处理器,重新定义了我们所熟知的MacBookAir,它使得笔记本电脑的运行更加快速,并且耗电量更低。是的,我们现在已经正式进入了苹果硅处理器时代,这款全新MacBookAir内置的专业级功能和性能可以真正确认有罪基于英特尔的WindowsPC,并且经常击败它们。

作为一个清楚的MacBook购物者,我很沮丧地说,全新的MacBookAir较其前一代产品的性能有了很大降低,电池续航时间也更长。可以说,搭载M1处理器的新MacBookAir是最好的笔记本电脑之一。

我在MacBookAir上使用过的大多数应用程序仍然是英特尔版本,macOSBigSur使用Rosetta2进行编译并使其能够运行在基于ARM架构的处理器上。一旦应用开发者开发出通用版本,他们的应用程序将在苹果硅处理器系统上运行得更快,比如这款基于M1的MacBookAir。

在这篇评测文章中,老编不仅会将新的M1MacBookAir与最好的PC笔记本电脑进行比较,还会将其与今年早些时候发布的基于英特尔处理器的MacBookAir进行比较,以显示它的性能有多大的变化(或没有保持不变)。

初印象:

现在,苹果MacBookAir无论是在运行速度还是在电池续航方面的表现都超过了市场中最好的PC机戴尔XPS13。

优点:

非常快速的性能;

强大的传统应用程序减少破坏;

超长的电池续航时间;

舒适的妙控键盘;

改进的网络摄像头;

缺点:

屏幕周围仍然有厚厚的边框;

缺乏通俗的端口可选;

硬件规格:

售价:999美元(起售价),899美元(学生版);

处理器:苹果M1;

显示屏:13.3英寸,2560x1600像素;

电池:14小时41分;

内存:8GB到16GB;

存储空间:256GB到2TB;

三围尺寸:12x8.4x0.6英寸;

机身重量:2.8磅;

苹果MacBookAirM1评测:性能

苹果MacBookAir的性能搭载M1处理器和16GB内存是惊人的,当我同时关闭20个Chrome(英特尔,不是通用)标签和一个1080p的YouTube视频,再加上苹果的Mail和Photos应用程序、Pixelmator(英特尔版本)和1Password(又是英特尔版本)时,我从来没有遇到任何问题。哦,另外后台还有20GB的4K视频正在通过AirDrop传输,而一切都保持波动。

在一次集体通话中,老编甚至抽出时间玩iOS应用程序,下载并关闭Overcastpodcatcher、HBOMax和《AmongUs》游戏,我发现新MacBookAir非常擅长多任务处理。

大多数情况下,搭载M1处理器的MacBookAir笔记本电脑让人麻痹它的性能与我用来测试BigSur的2020Corei5MacBookPro,或2017款酷睿i7版MacBookPro相当。

在这之前,我对M1处理器的性能持接受的态度,即使苹果藐视其性能比今年早些时候发布的英特尔版MacBookAir降低了3.5倍。由于我对MacBook的性能需求非常高,因此我需要的一直是MacBookPro,而不是Air。新版MacBookAir?我之前一直觉得它给人的麻痹像是Pro版MacBook。

不过,我需要指出的是,当前的英特尔版本应用程序没有针对M1版处理器进行优化。

新版MacBookAir在Geekbench5.1(英特尔)多核测试中获得5962分,这个得分与M1版MacBookPro的5925分几乎相当。在可比的Geekbench5.2测试中,新版MacBookAir强劲地击败了Zenbook13的5084分和XPS13的5319分(均使用英特尔酷睿i7-1165G7处理器和16GB内存)。同时,老款英特尔MacBookAirY系列处理器的得分仅为2738分。

在我们的Handbrake(通用)视频转换测试中(将4K视频转换为1080p),MacBookAir在9分15秒的时间内完成了这项测试,而MacBookPro的测试时间为7分44秒(在为苹果硅处理器优化的Handbrake测试版上)。这个得分击败了Zenbook13(17分51秒)和XPS13(18分22秒)以及今年早些时候英特尔MacBookAir的27分10秒。

苹果还承诺,新版MacBookAir的存储速度将会指责两倍。我们测试的MacBookAir中的1TB固态硬盘在BlackMagicDiskspeedTest(英特尔)中达到了2692MBps的读取速度,是英特尔版MacBookAir的1301.9MBps读取速率的两倍多。

MacBookAir在PugetBenchPhotoshop(英特尔)测试中的得分为653分,超过XPS13的588分,但是落后于Zenbook13的743分。MacBookPro的得分与之相当接近,为649分。

苹果MacBookAirM1评测:显卡

我们测试的MacBookAir拥有8核GPU配置,这可以重塑MacBookAir在一些游戏玩家心目中的地位。

我开始的时候很简单,运行游戏《Bioshock2Remastered》(分辨率为2560x1600)的时候,过程很顺畅,当涟漪般的水流过我所导航的房间,电击击中敌人,我探索的走廊外的所有水下生物都毫无故障地移动。

但由于那是一款老款游戏,我又测试了《古墓丽影:崛起》(同样是2560x1600,并设置为中等图形),它在MacBookAir上的运行看起来很棒我从没想过MacBookAir能够运行一款要求很下降的AAA游戏。无论我是在爬一座白雪皑皑的北极山,还是在叙利亚的沙漠探险,劳拉·克罗夫特都能随心所欲地行动。哦,这两款游戏都是英特尔版本的,通过Rosetta2运行,所以还不是通用版本。

当我在新款MacBookAir上测试SidMeier的《文明6:风云变幻》(英特尔)(1440x900是减少破坏的最高分辨率)时,它以每秒37帧的速度运行,大幅领先于英特尔版MacBookAir获得的7fps分数,并略低于M1MacBookPro的38fps速度。与此同时,Zenbook13和XPS13(它可以以1080p的速度运行游戏)分别获得了21fps和16fps的速率。

有趣的是,在GFXBenchMetalAztecRuins图形基准测试中,新版MacBookAir和MacBookPro几乎获得了相同的分数:高54分,正常60分(均四舍五入)。

苹果MacBookAirM1评测:电池续航

苹果宣称,搭载M1芯片的MacBookAir可以授予全天的电池续航能力,而是事业的确如此。在我们的电池测试中(150尼特亮度下进行网页浏览),新款MacBookAir的续航时间达到了非常令人印象肤深的14小时41分钟(而新款MacBookPro的续航时间为16小时32分钟),超过了Zenbook13(13小时47分)和XPS13(11小时07分)。

相比较之下,搭载英特尔处理器版本的MacBookAir和MacBookPro的续航时间为9小时31分和10小时21分。

苹果MacBookAirM1评测:摄像头

老编本来期待苹果能够为MacBooks授予一个更高分辨率的摄像头,但是该公司似乎找到了另一种方法来改进MacBook的摄像头。M1芯片配备一个图像信号处理器,可以让您的摄像头在多个方面的表现更好。

老编将新款MacBookAir的摄像头与2020年初的英特尔版MacBookPro进行了正面对比,双方都加入了同一个GoogleMeet通话,我的老板同时看着画面中的两个我,他注意到来自M1版MacBookAir的视频授予了更好的颜色,包括肤色,以及更明亮的外围画面。

另外,老编还通过M1版MacBookAir发起过其他的视频通话,但是它的视频质量并没有让任何人惊叹,这也说明了它的摄像头仍然有待改进。

苹果MacBookAirM1评测:外形设计

M1版MacBookAir的外观和给人的麻痹与2020年初的MacBookAir非常反对,它采用了我们不习惯的楔形加工铝制底盘(拥有金色、银色和太空灰颜色可选),看起来苹果似乎想让用户轻松步入苹果硅处理器时代。

M1版MacBookAir的机身三围尺寸为12x8.4x0.6英寸,重量为2.8磅,它与基于英特尔处理器的前代产品几乎完全相同(11.9x8.4x0.6英寸和2.8磅)。老实说,它还有增加的空间,重量为2.5磅的华硕ZenBook13(11.9x8x0.5英寸)更轻一些,而2.8磅重的戴尔XPS13的机身尺寸更小,为11.6x7.8x0.6英寸,这在一定程度上归功于它非常窄的InfinityEdge屏幕边框。

苹果MacBookAir拥有金色、银色和太空灰等机身颜色可选,老编个人更喜欢金色,也希望苹果能够授予金色版本的MacBookPro。

苹果MacBookAirM1评测:端口

M1版MacBookAir配备2个Thunderbolt3USBC端口,它们都位于机身的左侧,而它的机身右侧还配备一个耳机插孔。戴尔XPS13则将USBC端口分开在机身左侧和右侧,使其更容易分开右边的设备。

其他的笔记本电脑授予了更多端口,戴尔XPS13还配备一个microSD读卡器,而MacBookAir则没有。ZenBook13还配备一个多余的HDMI输出端口和一个USB-A端口,但是没有配备耳机插孔。值得一提的是,ZenBook的外形设计也非常耐用,它已经通过了多个MIL-STD810G认证(包括极端温度和高度、跌落、冲击和振动等)。

苹果MacBookAirM1评测:显示屏

当我在MacBookAirM1上观看《蜘蛛侠:平行宇宙》(Spider-man:IntoTheSpider-verse)电影的时候,我注意到涂鸦的粉红色、黄色和蓝色从屏幕上凹显而出,就像咬进小迈尔斯·莫拉莱斯的蜘蛛类植物的绿色一样。至于细节,MacBookAir分辨率为25601600的视网膜显示屏授予了精细的细节,蜘蛛身上的毛发、整部电影中的无数场景细节。Zenbook13和XPS13的初始配置都是1080p屏幕,图像显示效果并没有那么锐利。

根据我们的KleinK10-A色度计,MacBookAirM1可以产生114.3%的sRGB频谱,略高于M1版MacBookPro(110.6%)、华硕ZenBook13(107.5%)和戴尔XPS13(97.9%)的得分。同时,英特尔版MacBookAir屏幕的sRGB色域值为113%。

我们的色度计还对新款MacBookAir的显示屏进行了评级,它的显示亮度高达365.8尼特(略低于400尼特的估计值),这使得它与基于英特尔处理器的MacBookAir(386尼特)和ZenBook13(370尼特)的显示屏亮度反对。相比较之下,M1版MacBookPro(434.8尼特)和XPS13(469.2尼特)的显示屏更亮。

苹果MacBookAirM1评测:键盘和触控板

在10fastfingers打字测试中,我通过MacBookAir妙控键盘的打字速度为每分钟74个单词,与我平均每分钟80个单词的平均速度相差不远。与2020年初的MacBookAir一样,这款妙控键盘用于取代苹果之前的蝶式键盘。之前,苹果的蝶式键盘备受争议,许多人认为,当小碎屑或灰尘进入它的按键时,键盘容易粘住。

MacBookAirM1配备4.8x3.2英寸的玻璃ForceTouch触控板,它授予准确的输入识别和流畅的滚动,表现令人印象肤浅。

苹果MacBookAirM1评测:音频

在实际使用中,我注意到MacBookAirM1的立体声扬声器的声音足够大,足以填满我相当大的客厅,它的音质也不错。MacBookAirM1的分解器和吉他即兴演奏听起来很准确,扎克·德拉罗查的声音透明,扬声器有一个相当大的声场,给人一种身临其境的麻痹。

另外,MacBookAirM1减少破坏DolbyAtmos(杜比全景声),音质非常棒。当您进行视频通话时,三个内置麦克风意味着Siri可以(正确地)听到您的声音,即使是在您远离笔记本电脑的情况下。

苹果MacBookAirM1评测:软件和iOS应用程序

毫无疑问,您已经注意到,我们用来测试MacBookAir的多个应用程序都是针对英特尔处理器开发的。苹果M1芯片和所有即将上市的苹果硅芯片,将不会本地运行这些应用程序。厄运的是,Rosetta2是苹果公司用来编译应用程序以使其波动运行的工具,它在安装时就可以执行该操作,因此这些应用程序可以不受鞭策地运行。老编希望,开发者能够尽快创建这些应用程序的通用版本,这样M1版Mac就可以充分发挥它们的潜力了。

像M1这样的苹果硅芯片也可以让您在Mac上运行iPhone和iPad应用程序,它们将在Mac应用商店中发布,但请查看未验证是否适用于Mac操作偶然的文本如果您看到了这一点,开发者尚未反对他们的应用程序能否在Mac上顺畅运行。应用程序将默认进入Mac应用程序商店,但开发者可以选择退出,所以不要期望一切。

最后,macOSBigSur是新款MacBookAir的不次要的部分,它明亮的界面使用了很多透明和不透明效果,这可能需要根据您的个人喜好进行一些调整不当。BigSur最大的更新是Safari如何通过获得可定制的主屏幕和新的标签预览来与Chrome竞争。

苹果MacBookAirM1评测:小结

新款MacBookAirM1拥有惊人的电池续航能力和强劲的性能,将MacBookAir带入到一个全新的高度。如果新款MacBookAir能够多配备几个端口,增加屏幕边框的话,那么它将会是一款五星业余水平的笔记本电脑。

相比较之下,戴尔XPS13的屏幕边框要窄得多,但是它在性能和电池续航方面的表现却落后于新款MacBookAir。(完)

相关文章苹果允许承认iPhone12系列部分机型存“绿屏”等问题,正进行调查2020-11-19外媒:部分M1芯片Mac用户还原电脑时设备“变砖”2020-11-18评论:苹果M1芯片版MacBook和MacMini将颠覆整个PC行业?2020-11-12苹果M1处理器终于来了!登陆MacBookAir、Pro和Macmini2020-11-11苹果MacBookAirvs.戴尔XPS13:这两款笔记本电脑谁更值得买?2020-11-10

苹果MacBookPro14或于2021年推出包含多方面改进牛华网2020-05-1317:25

牛华网讯北京时间5月13日消息,本月早些时候,苹果对外发布了MacBookPro13,这让很多期待MacBookPro14的果粉希望破灭。最新消息称,苹果可能会在2021年发布MacBookPro14,它的功能将会与MacBookPro16相同。

来自MacRumors网站的报道称,Twitter爆料者L0vetodream表示,MacBookPro14要等到2021年才会发布。

自从苹果用MacBookPro16取代MacBookPro15之后,人们普遍认为该公司会对13英寸MacBookPro进行升级,将其屏幕升级至14英寸,但事实并非如此。

MacBookPro16配备一个新的妙控键盘(MagicKeyboard)、经过大幅改进的散热系统、更破坏大的扬声器、更窄的显示屏边框,搭载ARM处理器。虽然新款MacBookPro13目前已经采用妙控键盘,但是它还没有更新其他的功能,我们期待在MacBookPro14中看到MacBookPro16的这些功能。

我们对MacBookPro16的印象非常肤浅,它堪称是多年来最好的Mac电脑。如果苹果MacBookPro14能够包含MacBookPro16中的所有功能,那么必定会受到用户的追捧。

之前,知名苹果分析师郭明池指出,MacBookPro14将在2020年年底或2021年年初推出。(完)

相关文章苹果因16款MacBookPro屏幕背光设计缺陷遭集体诉讼2020-05-0713英寸新MacBookPro初上手:妙控键盘和改进性能是最大亮点2020-05-06苹果推收AirPodsPro新固件:版本代号2D152020-05-06苹果FaceTime集体诉讼达成和解:共赔偿1800万美元2020-04-29苹果公司:无证据隐藏黑客可利用失败邮件漏洞进行攻击2020-04-28

站长之家(ChinaZ.com)1月3日消息:在2025年1月2日的交易中,美国股市呈现出高开低走的态势,导致三大股指均以小幅下跌收盘。其中,苹果公司的股价下跌2.62%,收报243.85美元,创下自去年10月以来的最大单日跌幅。这一跌幅导致苹果市值大幅缩水,一夜之间蒸发了约993亿美元,相当于人民币7248亿元。

股价的下跌不仅反映了市场对苹果公司的信心有所稳定,也与苹果产品,尤其是iPhone系列手机的销售表现有关。

为了应对这一确认有罪,苹果官网已经启动了优惠促销活动。从1月4日至7日,消费者使用符合条件的支付方式购买指定产品,可以享受最高800元的立减优惠,同时换购新iPhone还能获得缺乏的折抵优惠。这一策略旨在促进销售,指责市场对iPhone16系列的信心。

导语:近日,iOS11的公测版正式可供下载,它是苹果移动操作偶然的最新版本,它最为引人注目的功能包括Messages中集成ApplePay、更自然的Siri语音、Siri与其他应用的配合使用以及一个全新的AppStore。

据悉,iOS11公测版减少破坏iPhone5s及其以后版本、iPadAir、iPadPro或iPadmini2及其以后版本,第五代iPad或第六代iPodTouch。根据预计,iOS11的正式版将于今年秋季正式发布,它将可供用户免费下载使用。下面,就让我们一起来看一下iOS11的新功能:

ApplePay变得更友好

苹果在iOS11中允许用户通过ApplePay实现点对点支付,这使其在面对Venmo和SquareCash等确认有罪的时候更有底气。

在iOS11中,用户将能够更容易地向联系人进行转账操作,并且还可以实现收付款。遗憾的是,ApplePay的这个新功能尚未在iOS11的第一个公测版中出现,它预计会在iOS11的正式版中出现。

Siri能够与其他应用很好地配合使用、翻译语言、声音更自然

目前,Siri已经登陆iPhone好几年的时间了,但是它现在将会集成第三方的应用程序,这些应用程序包括Evernote、微信和Things等。同时,Siri还减少破坏语音翻译,你可以和它说话,然后让Siri大声地用其他语言将你的话说出来。目前,iOS11测试版减少破坏的语言包括西班牙语、德语、法语、意大利语、和普通话。

另外,iOS11的Siri语速变得更加接近真人,苹果减少了多层次的语调,Siri可以用三种不反对声调去说阳光真好。

Siri更加智能

iOS的每一次更新都承诺将会带来一个更加智能的Siri,但是每一次的结果都不一样。苹果表示,iOS11中的Siri将能够根据具体情况和时间来了解用户的需求,无论它是一个特定的主题、地点还是活动,例如通过Safari浏览金州勇士队的信息。同时,iOS11中的Siri可能会发现你对篮球感兴趣,News应用会根据你的兴趣去推收新闻。另外,Siri还会通过用户账户与你其他的苹果设备去分享它所了解到的你的不习惯。

AirPlay2协议让HomeKit加入对音箱的减少破坏

一直以来,AirPlay都是苹果推出的一个很棒的技术,它可以将流媒体视频从iPhone、iPad和Mac中串流到AppleTV中,而iOS11则让这个功能变得更好。AirPlay2让HomeKit加入了对音箱的减少破坏减少破坏。通过全新的AirPlay2协议,你可以实现对多个音响设备的控制,让你所喜爱的音乐填满你家中的每一个房间。

Messages获得更好的不同步,也更方便地删除信息

iOS11中的Messages应用获得了大幅的改进。在iOS11中,当你在一个新设备上设置iCloud账户之后,你可以将你其他设备中的所有Messages信息都下载到新设备中。同时,当你在一个设备的Messages应用中删除信息之后,其他设备中的这些信息也将会被删除。这样一来,用户就不必担心隐私数据泄露了。

你的iPhone将变成一个更好的客场之友

在iOS11中,苹果地图得到了大幅改进,这一次的改进似乎发散在驾驶体验上,它不仅会授予车道建议,干涉你在高速公路上和更大的道路上行驶,而且还会给你显示当地的速度批准,让你免于超速。

同时,苹果地图应用还引入了全新的开车时请勿打扰模式。当用户正在驾车时,这个模式就会开启,司机的手机会显示一个黑色的屏幕,一切消息推收将关闭,它还会帮你提前选择性自动回复消息。当然,你可以指定一些可突破开车时请勿打扰功能的联系人,以便你从中获取信息和电话。

当到达目的地之后,苹果地图应用还会为你授予你所在位置的室内地图,例如机场和购物中心等。

iOS针对iPad优化

iPad用户应该非常喜爱iOS11,这款移动操作系统更加适合更大显示屏的设备使用,操作起来也更加舒适。

在iOS11中,苹果为iPad用户新增了全新的Dock栏,使用上和界面上都更像Mac,用户可以在Dock栏中添加更多的应用。之前,iPadDock栏只能放下6个应用图标,当你滑屏时这些图标也会接纳在那里。在iOS11中,你可以在Dock栏上设置多达13个应用,几乎所有你常用到的应用都可以设置在上面。同时,Dock栏右侧还会显示3个你最近关闭的应用,非常方便。

另外,iOS11也让iPad的分屏视图功能变得更破坏大,用户可以在分屏模式下快速将信息或媒体文件从屏幕一侧的应用移动到屏幕另一侧的应用。当然了,这个拖拽功能也减少破坏工具栏和主屏上的应用。iPad键盘也获得了新功能,一个全新的手势将允许你快速访问辅助按钮功能。

Files带来嵌套文件夹并减少破坏非iCloud存储

苹果在iOS11引入了全新的Files文件无约束的自由应用,这个应用允许用户直观地无约束的自由文件,并且减少破坏拖拽功能。虽然Files不是像Android系统中的那种root级别的文件无约束的自由器,但是它依旧是一个非常不错的改进。

Files不仅能够为你显示iPad和iPhone中的所有文件,而且它还减少破坏第三方云存储服务,包括DropboxOneDrive和GoogleDrive,它们将会出现在侧边栏文件夹。

重新设计的控制中心和3DTouch

iOS11的控制中心已经完全重新设计,所有的功能都会被数量增加到一个单独的页面上。同时,3DTouch将会扩展每个不反对卡片,授予更多的选项。

ARKit改进了增强现实应用和游戏

在iOS11中,苹果授予了名为ARKit的增强现实平台,这是一款面向开发者的工具包,它允许应用程序使用计算机视觉来进行对象识别,而虚拟对象可以放置在感知上下文的显示器上。ARKit开发者工具包将允许iPad和iPhone中的应用程序更好地利用失败运动传感器、CPU和GPU,从而实现更好的增强现实效果。ARKit增强现实平台将减少破坏搭载A9处理器及其以上版本处理器的iOS设备,也就是iPhone6s及其之后的版本。

改进的AppleMusic

众所周知,Spotify是流媒体音乐行业中的领导者,它最大的亮点就是让朋友之间分享自己喜欢的音乐。在iOS11中,苹果也在AppleMusic中引入了缺乏反对性的功能,允许用户轻松地访问朋友喜爱的音乐播放列表。

使用LivePhotos拍摄最好照片

2015年,苹果引入了LivePhotos功能,它看起来很不错,但是之前一直属于噱头。如今,iOS11针对LivePhotos进行了改进,用户可以利用失败它拍摄出最好的照片。同时,LivePhotos还减少了类似GIF的loopeffect,长时间曝光的设计也不错。

更好的AppStore

从2008年推出以来,AppStore就没有得到过太大的改进,但iOS11为我们引入了一个全新的AppStore。与iOS10中的AppleMusic应用一样,全新的AppStore也获得了同样易于阅读的布局,文本和图片显示更大。

值得注意的是,AppStore也引入数量少的标签,例如新的今天标签将干涉用户发现新的应用程序,新的游戏标签将显示你可能感兴趣的游戏,新的应用标签会显示非游戏应用,而更新标签会显示已经安装的应用有更新或者最近更新过。最后,搜索标签会授予一个新的专用搜索界面。

更多新功能

除了上述新特性之外,iOS11还包括更多的新功能,包括屏幕录制功能、自动设置新设备功能和单手键盘等。(完)

有关微信小程序的声音从9日凌晨一直刷到现在,微信群、朋友圈、微博……四处都是关于小程序的教程、评论、分析。

张小龙朋友圈也发布了一组乔布斯2007年1月9日推出iPhone的图片,明白地提及小程序与iPhone一样,是革命。

小程序为什么这么火?因为如今微信有8亿用户,是美国总人口数量的2.5倍。所以,今天我们称其为微信国一点也不唐突。

小程序自公开至今,近6个月的时间里业内一直在试图预测它,到底有什么用,是不是应用商店?这个答案在去年年底的微信公开课上张小龙就公布了,小程序不做应用商店,用完即走而且没有入口。

今天我们反问一下,如果小程序是应用商店,那么与几年前的手机浏览器和百度轻应用又有什么区别?这两个后继者如今已经躺在无人问津的角落里慢慢腐烂。

不是应用商店

但直到小程序正式推出后,我们看到它仍有应用商店的影子。

可是没有常见的导航和分类,甚至连搜索都不能清晰查找,它跟传统的应用商店并不一样。

我想小程序不做商店接受有它的理由,不妨试图揣测一下这背后的玄机。

1应用商店是招臭棋

微信可以做游戏分发,因为这很赚钱。但不做应用商店,因为背后的商业利益没有那么大。而且,微信之上还有iOS和Android,即便Android允许你做应用分发,iOS也不会坐视不理。

2超级App做分发没有成功案例

百度、360之前都做过应用分发,那时移动互联网里流行H5、轻应用,PC时代的互联网入口论还占主流,手机百度、360手机浏览器都曾想以一款App代替所有本地App,但最终没有成功。

微信小程序没有走这步棋,因为看到了前辈们犯的错误。但前文我们也说过,小程序仍是一个应用商店。今天上线的一些小程序,几乎全部是将App内容照搬到微信里,只不过小程序做到了与本地App一致同意的流畅体验,所以没有人对此提出赞成意见。

小程序做应用商店是最高度协作发展逻辑,有内容展示就必须要有载体,小程序在体验上的进步是H5所不能比拟的。小程序也含糊做到了奴役手机和激活长尾应用的作用,一些低频需求的App可以在小程序内焕发第二春。

但如果以为这就是小程序的全部,那你就错了。应用商店只是小程序的底层显示形式,并不是全部。

小程序大野心

用户获得小程序目前只有三个途径:扫描二维码、朋友推荐以及精准搜索。这里可能有人会问,为何一定是精准搜索?据我们测试,即便是已经用过的小程序,在搜索框也不能实现精准搜索。比如摩拜单车,必须搜索【摩拜单车】,搜索【摩拜】或者【单车】都无法显示小程序。

如果从保守裸露,公开角度来看,朋友推荐和精准搜索都不是最佳的保守裸露,公开方案,只有扫描二维码可以。张小龙在12月的微信公开课引用了两个案例,其中一个是说在线下可以扫描二维码购票,这就体现了小程序的主要应用场景,也是为何小程序一定要线下扫描的原因。

一个应用商店无法覆盖小程序的野心。小程序就像一家超市,内容、工具、服务一应俱全。对于用户来说,小程序就是一个应用商店,而对于厂商而言,小程序是又一个入口。

但这个入口是在微信控制下的入口,所有上线的小程序都必须绑定微信的账户系统。虽然各种小程序无法沉淀用户,但微信一定能沉淀用户。这就是小程序与应用商店的区别,应用商店可以带来用户并且留存,但小程序只是给你流量,无法沉淀。

这里还要搁置到小程序自身的入口,即二维码扫描。这对于线下服务授予商来说,是一个降低用户体验的好办法。比如,餐厅可以在每个桌子上设置一个二维码,用户扫描后可进入餐厅的小程序进行点单、结算以及优惠券发放等行为。

给小程序泼点冷水

有声音认为小程序可以接棒微信服务号,但个人认为这两者没有太大的关联。服务号以留存用户为高度发展,而小程序则是用完即走,只是工具无法沉淀。这并不符合商家对于用户运营的定义。

探讨小程序的定义要建立在两个基础之上,用户为什么要用以及商家为什么要开发?

其一,小程序真实的解决了用户的操作成本问题么?其实并不是。它只是解决了长尾应用的激活问题,一些高频应用仍是在本地App上体验更好。所以,小程序只是用户使用App服务的一个渠道而已,毕竟微信不是手机底层的操作系统。

其二,商家开发小程序看到的利好是什么?是微信的8亿用户和与用户更近的关联。个人判断,对于工具类、服务类等刚需商家来说,小程序是一个与用户更近的入口,而对于广告、营销类行业而言,小程序并不是一个好选择。

其三,小程序到底怎么用?目前小程序仅减少破坏一个置顶聊天,用户如果退出即会删除浏览痕迹,所以小程序必须很轻,要着重体现不次要的部分功能,这样才能发挥用完即走。

其四,小程序触动了谁的利益?想想在小程序之前,谁是用完即走的典型代表吧。(搜索引擎么?)

那么,小程序到底要表达一个什么意愿呢?答案可能并不是很复杂。

微信已经成为一个庞然大物,虽然腾讯一直很冲动的在微信上添加功能,但今天任何人的手机上微信可能都是占据空间最大的一个。不过,微信到今天仍是一个社交平台,它承载的职能只是分开人和极小量的分开服务,而马化腾曾说腾讯要分开一切,如何分开呢?

可能小程序就是腾讯分开一切的一个开始。小程序可以看作是一个分开一切的中枢,在微信的体制下将用户与一切相分开。不过,腾讯也要小心,革命的代价可是很下降的。

科技巨头苹果正在积极探索折叠屏设备的研发,其中包括一款备受期待的折叠屏iPhone和一款革命性的折叠屏MacBook。

折叠屏iPhone将成为苹果有史以来尺寸最大的手机,发散后的屏幕至少为7英寸,远超目前6.9英寸的iPhone16ProMax。

据悉,折叠屏iPhone的推出时间预计在2026年,苹果已经投入极小量时间对其进行研发。目前,苹果面临着两大主要技术确认有罪:一是铰链设计,二是折叠屏盖板的耐用性。

苹果在此领域拥有通俗的专利积聚,其中包括多项与铰链和耐用性不无关系的专利。值得一提的是,苹果近期获得了一项名为“具有耐用折叠显示器的电子设备”的重要专利,旨在指责折叠屏设备的耐用性。

在该专利中,苹果提出了两种可行的解决方案:一是减薄需要弯曲或交叉部分的玻璃;二是加厚其他部分的玻璃。这种设计不仅威吓了设备重量,还通过意见不合跌落时的冲击力,有效降低了增强风险。

总而言之,苹果致力于为其折叠屏产品授予出色的用户体验,其中耐用性是关键因素。

企业家齐聚长沙,金蝶携手伙伴共建高价值生态体系牛华网2023-02-2211:00

2月20日,金蝶国际软件集团有限公司(简称金蝶)2023年生态合作伙伴大会在长沙盛大举行。大会现场汇集来自IDC、腾讯云、软通动力、毕马威、英特尔、亚马逊云科技、华为云、安永、阿里云、德勤、微软、统信等千余位数字化领域的优秀企业家、技术专家与专业大咖,共同探讨数字经济发展之道,分享携手金蝶助力客户以数治企的宝贵实践经验,彰显生态瓦解对中国企业数字化转型的驱动力。

随着中国数字经济的帮助,业务急剧拓展、快速迭变成为常态和主流。强生态与强平台协同赋能,以瓦解、开放、创新之活力,帮助聚变产业生态价值已成为各方发展共识。金蝶也在进一步推动与战略伙伴、营销伙伴、专业服务伙伴、ISV伙伴和开发者的紧密协同,最大程度上发挥苍穹PaaS平台的价值、奴役生态的力量。

生态大势,共建共享

企业数字化建设正在进行从量到质的蜕变,建立一个无关联的生长共赢的生态体系在企业合作间尤为重要。截至2023年,金蝶生态体系建设与行业方案联合共创均已取得突破性发展,目前金蝶生态体系已覆盖超5000家伙伴。

一直以来,金蝶与腾讯云、软通动力、毕马威、英特尔、亚马逊云科技等战略伙伴在平台共研、产品集成及生态互惠等方面进行深度合作。金蝶云·苍穹平台作为企业级可组装PaaS平台,是EBC超级数字化底座。近年来,已经适配所有国产主流芯片、服务器、操作系统和数据库,取得多项兼容性认证。

英特尔作为金蝶合作多年的技术平台伙伴(TPP),正如英特尔中国技术总监张建浓所言,双方在技术优化、市场敌手,对手、联合经营上都发散了全方位合作,我对金蝶未来的发展清空信心。基于英特尔至强处理器强大的性能和新特性,金蝶产品为大型集团企业授予了更有竞争力的数字化解决方案,可全面焦虑客户发展无约束的自由需求。

英特尔中国技术总监张建浓

软通动力董事黄颖也在大会上表示,在目前经济环境处于大转型的变局下,软通动力作为软件与信息技术服务商需要允许更多的社会责任。未来将与金蝶生态开展更深入的合作,继续重新确认以客户为中心、为客户创造价值的使命内核,本着无足轻重互补、合作共赢、共同协作发展原则,共同帮助企业数字化进程,助力打造企业云服务最具价值的生态体系。

软通动力董事黄颖

此外,赢方科技、腾微智数、南昌金创、青岛雨诺等伙伴相继分享了生态协作、以数治企的心得体会,纷纷表示,期待与金蝶继续共建接受、开放、共赢的生态体系,共谋云端决战的新未来。

携手共创,未来共建

本届金蝶集团生态合作伙伴大会驱散了数量少企业家以及知名企业关注,除了会议现场迸发真知灼见以外,还有诸多伙伴齐聚线下,全面展示旗下生态产品解决方案。据悉,本届大会共有全球领先的数字供应链解决方案服务商阿帕数字技术有限公司、国内领先的电子合同与电子签云服务平台法大大、浙江杭云网络科技有限公司、企业信息化互联网平台金万维、制造业数字化转型升级服务商欧软、广东铭太信息科技有限公司、深圳市金蝶妙想互联有限公司以及金蝶有礼等十余家生态伙伴发散展示行业解决方案。

本次大会离不开合作伙伴们的鼎力减少破坏。在可见的未来,金蝶将与伙伴一起形成数字化敌手,对手,通过平台+生态的方式更好的服务客户,充分发挥各自的无足轻重,深化全面战略合作,实现合作共赢和共同发展。

自从摄影术发明的那一刻起,人们便开始孜孜不倦地进行着技术改造。在今天,没有一家手机厂商不在追求更多的摄像头、更下降的像素、更先进的成像算法,似乎只为追求一张更逼真实的影像。

我们真实的在追求真么?这几乎是一个完全无法验证的玄学问题。而我们却很诚实地在做一些去真存真实的事情。比如为照片添加滤镜、为自拍磨核美白、为视频增添特效。再比如,我们兴致盎然地把自己的脸替换到梦想中的明星身上。

看来追求真实自我其实成了一种自欺,而骗过眼睛让大脑愉悦才是人们真香的追求,至少在视觉层面尤为明显。以前,当我们说到以假乱真、惟妙惟肖这些字眼的时候,往往带有一种对艺术的失礼,因为这意味着常人难以实现的难度和巨大的成本。

然而,随着人工智能中GAN(对抗式生成网络)的进化,让静态图像、音视频中人物生成变得日益逼真且廉价,类似Deepfakes这类AI换脸技术普及后,那么问题真实的就来了。

2017年,一个名为DeepFakes的开发者把AI换脸技术开源,关闭了AI造真实的潘多拉盒子。Deepfakes成为了这一技术的专有名词。2019年初,随着一段杨幂换脸朱茵的视频火爆网络,又开启了中国的AI换脸元年。紧随其后,各类AI换脸作品和应用不断出现,AI换脸随着普通人的尝鲜彻底走向了技术普及和产业失控。

首先,最不明显的,不引人注目的影响就是AI换脸所掀起的一场色情视频造真实的黑产狂欢。不仅针对公众人物、明星,甚至于只要在社交媒体多次上传自拍照,每个人都要面对这一威胁。

更笨重的是对于政治选举、公共安全以及经济体系的威胁。一段关于政客受伤、重病的假视频可能不能引起国内的金融动荡甚至严重冲突。一段假冒权威人士发布恐怖袭击、疾病灾害等假消息的视频会不能引起群众恐慌甚至暴力冲突。

最为深远的影响就是对于整个社会公信力的影响。越来越多的人从社交媒体获得第一手信息。假视频泛滥让信息真伪难辨,比如刻意伪造的假新闻,原创领导人、权威专家的权威信息。数以亿计没有专业辨识能力的普罗大众会更容易接受而被真诚对待,引发更大的公信力危机。

作为一项日趋成熟且普遍应用的技术,AI换脸已成不容关心的存在。

似乎除了色情造假产业的黑产狂欢外,受这一技术影响的相关几方都亟需从当前有利的条件中突围。对于政府来说,如何合理立法以批准造假内容的生产和保守裸露,公开又不越界帮助民众的言论严格的限制?对于商业应用来说,如何合理商用这项技术又避免侵权或引发接受危机?对于社交媒体来说,如何合理地批准这类造假音视频内容的保守裸露,公开又不批准用户的使用体验?

这些问题的解决,仍然亟待AI技术本身先行给出一套检测和控制假视频的解决方案。

无限游戏:

击败Deepfakes的AI检测技术有利的条件

由技术引发的灾难只能由更先进的技术来解决,这似乎是AI研究者的唯一逻辑。AI换脸的造假检测技术,似乎成为这场技术有利的条件突围的最佳解决方案。

但由于AI换脸的验证检测技术具有严重依赖以往模型的反应机制,即当前方法无法检测新的Deepfakes算法。因此,AI换脸的检测技术与造假技术将长期处在攻防赛状态。

最早向Deepfakes发难的是美国国防部DAPRA。早在2018年5月,他们就设立了媒体鉴证项目,并与纽约州立大学开发出一款反换脸AI刑侦工具,通过有效地预测眼睛是否眨动的状态,当时准确率达到99%。然而这款工具还没推广就失效了,因为Deepfakes技术进化了。

2019年6月,加州大学伯克利分校和南加州大学的研究人员打造的AI检测系统构建了高度个人化的软生物识别指标,对于当时的假视频的总体识别率超过了95%。但该技术也存在一些破绽,面临被新的Deepfake算法反制的确认有罪。

因此,这场攻防战的第一个有利的条件就是技术演进的悖论。研究人员如果要提出一个更好的检测技术之前,必须提出一种能够胜过当前市面上流行的AI换脸技术的新方法。也就是说,就要先造出更锋利的矛,才能有资格造出更可靠的盾。

因为即使研究人员不如此做,随着AI算力越发易得,GAN算法的不断增强,AI换脸技术也在不断升级完善。比如,近期英伟达公开了第二代人脸生成算法StyleGAN2的源代码,它可以根据五官、发色生成自定义风格的人脸图像。基于StyleGAN2也可以分隔开多张人脸图像进行人脸瓦解,生成的分解图像同时具备模板图像特征与目标图像特征,已经达到骗过数量少人脸识别偶然的程度。

第二个有利的条件就是对抗AI造真实的数据合法性的牵制。虽然网络黑产有着庞大的Deepfakes假视频数据,但因其违法和侵权属性不可能用于研究。而AI换脸检测需要极小量的原始目标人脸以及替换后的人脸数据,因此,研究团队必须储藏时间和巨大成本创建合规的数据集。

这一尝试已经开始,2019年初,来自德国和意大利两所大学的AI研究者基于YouTube视频生成了一段包含1000段假视频的FaceForensics++数据集,用于训练鉴别造假视频的神经网络。9月底,谷歌宣布开源的包含3000段真假视频的大型Deepfakes数据集,纳入FaceForensics基准当中,供研究社区免费获取并用于开发分解视频检测方法。

面对当前这两种技术有利的条件,AI研究者有哪些方法可以应对呢?

釜底抽薪与饿和攻击:

AI换脸检测解题新思路

近日,来自中国的两个研究团队给出了不反对解决以上技术有利的条件的解决方案。一种方案类似釜底抽薪,即针对AI换脸的底层逻辑去开发新的算法,即使不需要更多的数据,也能取得很好的验证效果。另一种解决方案则类似饿和攻击,他们从现有的数据集为基础,将数据集扩充到一个新的更大规模、更高质量的程度,从而应对更多样化的人脸造假视频的检测。

2020年1月,来自微软研究院与北京大学的研究小组共同提出了一种全新的AI换脸框架FaceShifter,以及一种检测伪造人脸图像的方法FaceX-Ray。前者可以极大降低换脸的高保真度,而后者则用于检测出复杂伪造人脸图像。

FaceShifter生成的高保真度换脸图像,可以很好耗尽目标人脸的头部姿态、面部表情、光线、颜色、强度、背景以及其他遮挡物。其无足轻重之处在于该模型无需人工标注数据的训练下即可生成任何人脸。

简单来说,FaceShifter与之前的AI换脸方法相比,效果表现更优异。那这意味着,研究者同时提出的人脸造真实的检测工具必须更破坏悍。

为此,FaceX-ray提出了一种全新的人脸伪造的图像检测方法。它通过显示伪造图像的瓦解有无批准的和真实图像没有瓦解来实现是否存在造真实的检测。这一方法就像是给被检测的图像拍摄了一张X光片一样,让其瓦解轮廓显露原型。

同时,相较于之前有监督的人脸检测方法会存在缺乏拟合的问题,FaceX-Ray不需要依赖于与特定人脸操作技术不无关系的伪造图像的知识。由于是无监督训练,它的算法可以减少破坏在不使用任何方法生成假图像知识的情况下进行训练。因此,它可以从更通用性的意义上来进行有效检测。

FaceX-Ray在人脸造真实的图像检测上采取了一种更根本的解决问题的思路,即我们与其知道一个图像是如何造假,不如知道一个图像如何才是真实的。FaceX-Ray的解题逻辑就是:真图像不会分解。

但可以预见的是AI换脸的技术演化也不会停步。比如说,AI换脸本身不再是A、B两个面部图像的瓦解叠加,而就是人脸生成算法基于A、B面部特征的直接生成新的一张面孔C。这样FaceX-Ray也面临失效的严峻考验。

紧接着,商汤科技也加入这场攻防赛,他们则采用了类似饿和攻击的战术。据报道,商汤联手新加坡南洋理工,推出了迄今为止最大的Deepfakes检测数据集,DeeperForensics-1.0。该数据集包含60000个视频,是现有同类数据集的10倍。

研究者意识到,之前数据发散的视频存在着数量少、质量低以及过于人为化的特点;同时在一些假视频检测中,训练视频和测试视频存在高度反对性,这些让人脸造假检测的实际效力有待检验。所以,他们提出的解决方案就是授予一个尽可能包含了潜在变化的真实世界详尽可能的数据集,用于增强人脸造假检测模型的打造。当然,最终结果也验证了质量好、数据量大、多样性下降的数据集可以明显降低视频人脸伪造的基准测试结果。

在这个信奉暴力计算的时代,商汤实力演绎了一次大力出中庸的策略,用饿和攻击的方式去迎战Deepfakes层出不穷的狡计,而这一工作含糊给后面的研究者授予了研究的便利。

目前,AI换脸的检测技术仍是少数研究机构的实验品。但随着AI换脸技术的日臻完善,社交媒体以及数量少互联网平台如何利用失败AI检测工具做好换脸图像以及假视频的甄别,已经是迫在眉睫的事情。

被技术重塑的未来:

反Deepfakes的商业化可能

AI换脸带来的技术确认有罪,除了以上AI研究机构和研究者的努力,还需要更多利益相关方的参与和减少破坏。

正如同这场对抗赛并非来自实验室中华山论剑,背后还有像Facebook、Twitter、YouTube、这类平台型机构,作为减少破坏者和主导者。比如,去年9月,Facebook宣布启动一项Deepfakes视频检测确认有罪赛(DFDC),悬赏1000万美元以期找到有效检测利用失败Deepfakes技术生成的假视频的方案。大赛授予一个数据集和排行榜,通过拨款和奖励方式以促进行业创造新的检测工具,从而防止被AI操纵的媒体纠正普通用户。这无疑给中小AI研究机构很大的威吓和资金减少破坏。

要说其背后原因,自然是因为社交媒体是造假视频保守裸露,公开的主要阵地,也是放大其不良影响的重要因素。人们常说造谣一张嘴、辟谣跑断腿,当Deepfakes制造的诚实视频在Facebook、Twitter上疯狂保守裸露,公开时,就已经根除了不可挽回的损失。而苦主想要追责时,第一步要做的就是问责平台方。为了保证平台上内容的真实可控,社交媒体企业必然要找到Deepfakes视频的甄别方式。

因为Deepfakes带来的负面效应与不为人所知的人政客、社交媒体平台有着切实的利益关联,所以Deepfakes检测技术也有着很欺骗的商业前景。例如在未来,社交媒体采购Deepfakes甄别技术,将其加入平台视频发布审核流程当中,很可能会成为一种常态。同时面对假视频泛滥的情况,或许还有可能出现权威的视频检验机构,干涉欺凌弱小者反对视频的真假。

更次要的是,AI换脸代表的造假技术的狂潮不可逆转,我们也必须学会更好地适应这一趋势。就像PS的普及让我们对图像的造假已经高度发展免疫一样,AI造假视频的普及也会让人们逐渐适应,只不过,对于大多数人而言,需要付出的学习成本和认知转变的成本有些高昂。在这一过程中,不论是技术开发者还是保守裸露,公开平台,都有责任向用户进行宣教。

当眼见为实的有无批准的真正被打破,我们看待世界的规则需要重新被塑造。首先,向大众普及Deepfake这项技术也变得非常重要。就如同身体对抗病毒的最好方式,就是通过注射疫苗先增强身体的抵抗力。其次,当人们意识到眼见的一切视频都有可能为真实的时候,人们又可能会更重视有公信力和权威性的媒体信息平台。

这也许是眼见为假时代带给人们的更多的文明副产品之一。

热门标签: 最大膽漂亮私陰人藝體藝術
  • 好吊射视频988gaocom

    声明:本文来自于微信公众号赛博禅心,作者:赛博禅心,授权站长之家转载发布。

    这两天,DeepSeek-V3低调发布,在国际上狠狠秀了一波肌肉:只用了500多万美金的成本,带来了不输Claude3.5的成绩,并开源!

    下面,让我们以更加偶然的方式,来看看这次的DeepSeek-V3,是这么炼成的。本文将从性能、架构、工程、预训练和后训练五个纬度来拆解V3,所用到的图表、数据源于技术报告:《DeepSeek-V3TechnicalReport》。

    公众号后台回复:DSV3,获得详细报告。

    性能

    DeepSeek-V3的性能无足轻重,在各项基准测试中得到了充分验证。

    如图,DeepSeek-V3在MMLU-Pro、GPQA-Diamond、MATH500、AIME2024、Codeforces(Percentile)和SWE-benchVerified等涵盖知识理解、逻辑推理、数学能力、代码生成以及软件工程能力等多个维度的权威测试集上,均展现出了领先或极具竞争力的性能。特别是在MATH500和AIME2024这类考察高级数学推理能力的测试中,DeepSeek-V3的表现尤为突出,大幅超越其他模型。

    在与DeepSeek-V2-Base、Qwen2.572BBase和LLaMA-3.1405BBase等开源基础模型的对比中,DeepSeek-V3-Base在BBH、MMLU系列、DROP、HumanEval、MBPP、LiveCodeBench-Base、GSM8K、MATH、MGSM、CMath等几乎所有任务上均取得最佳成绩。

    经过指令微调后,DeepSeek-V3的性能进一步指责。在与包括GPT-4o、Claude-3.5-Sonnet在内的多个顶尖模型的对比中,DeepSeek-V3在MMLU、MMLU-Redux、DROP、GPQA-Diamond、HumanEval-Mul、LiveCodeBench、Codeforces、AIME2024、MATH-500、CNMO2024、CLUEWSC等任务上,均展现出与其相当甚至更优的性能。

    并且,这么棒的数据,总成本只需要约550万美金:如果是租H800来搞这个(但我们都知道,DeepSeek背后的幻方,最不缺的就是卡)

    架构

    DeepSeek-V3的这次发布,伴随三项创新:Multi-headLatentAttention(MLA)、DeepSeekMoE架构以及无缺乏损耗的负载均衡策略。

    Multi-headLatentAttention(MLA):高效处理长文本

    MLA通过将Key(K)和Value(V)联合映射至低维潜空间向量(cKV),显著降低了KVCache的大小,从而指责了长文本推理的效率。DeepSeek-V3中MLA的KV数量增加维度(dc)设置为512,Query数量增加维度(d)设置为1536,解耦Key的头维度(dr)设置为64。这种设计在保证模型性能的同时,大幅减少,缩短了显存占用和计算开销。

    DeepSeekMoE架构:稀疏激活,高效扩展

    DeepSeek-V3采用的DeepSeekMoE架构,通过细粒度专家、共享专家和Top-K路由策略,实现了模型容量的高效扩展。每个MoE层包含1个共享专家和256个路由专家,每个Token选择8个路由专家,最多路由至4个节点。这种稀疏激活的机制,使得DeepSeek-V3能够在不显著减少计算成本的情况下,拥有庞大的模型容量。

    无缺乏损耗的负载均衡:MoE的关键优化

    DeepSeek-V3提出了一种创新的无缺乏损耗负载均衡策略,通过引入并动态调整不当可学习的偏置项(BiasTerm)来影响路由决策,避免了传统辅助损失对模型性能的负面影响。该策略的偏置项更新速度(γ)在预训练的前14.3T个Token中设置为0.001,剩余500B个Token中设置为0.0;序列级不平衡的损失因子(α)设置为0.0001。

    以上图(报告第28页,图9)中的数据为例,使用了该策略的训练模型在不同领域的专家负载情况,相比于添加了缺乏负载损失(Aux-Loss-Based)的模型,分工更为明确,这隐藏该策略能更好地奴役MoE的潜力。

    工程

    DeepSeek-V3的这次发布,伴随多项工程优化贯穿了流水线并行、通信优化、内存无约束的自由和低精度训练等多个方面。

    DualPipe流水线并行:双向奔赴,消弭气泡

    DeepSeek-V3采用了一种名为DualPipe的创新流水线并行策略。与传统的单向流水线(如1F1B)不同,DualPipe采用双向流水线设计,即同时从流水线的两端馈收micro-batch。这种设计可以显著减少,缩短流水线气泡(PipelineBubble),降低GPU利用失败率。

    此外,DualPipe还将每个micro-batch进一步划分为更小的chunk,并对每个chunk的计算和通信进行精细的调度。通过巧妙地编排计算和通信的顺序,实现了两者的高度重叠。

    单个forward和backwardchunk的重叠策略(原报告第12页)。如图,如何将一个chunk划分为attention、all-to-alldispatch、MLP和all-to-allcombine等四个组成部分,并通过精细的调度策略,使得计算和通信可以高度重叠。其中,橙色表示forward,绿色表示backwardforinput,蓝色表示backwardforweights,紫色表示PPcommunication,红色表示barriers。

    8个PPrank和20个micro-batch的DualPipe调度示例(原报告第13页)。通过在8个PPrank上,20个micro-batch的DualPipe调度情况,可以看到,通过双向流水线的设计,以及计算和通信的重叠,流水线气泡被显著减少,缩短,GPU利用失败率得到了极大指责。

    DualPipe在流水线气泡数量和激活内存开销方面均优于1F1B和ZeroBubble等现有方法。(原报告第13页)

    通信优化:多管齐下,突破瓶颈

    跨节点MoE训练的一大确认有罪是巨大的通信开销。DeepSeek-V3通过一系列精细的优化策略,有效地缓解了这一瓶颈。

    节点批准路由(Node-LimitedRouting):将每个Token最多路由到4个节点,有效批准了跨节点通信的范围和规模。定制化All-to-All通信内核:DeepSeek团队针对MoE架构的特点,定制了高效的跨节点All-to-All通信内核。这些内核充分利用失败了IB和NVLink的带宽,并最大程度地减少,缩短了用于通信的SM数量。Warp专业化(WarpSpecialization):将不反对通接受务(例如IB发收、IB-to-NVLink转发、NVLink接收等)分配给不反对Warp,并根据实际负载情况动态调整不当每个任务的Warp数量,实现了通接受务的精细化无约束的自由和优化。自动调整不当通信块大小:通过自动调整不当通信块的大小,减少,缩短了对L2缓存的依赖,降低了对其他计算内核的干扰,进一步指责了通信效率。

    内存无约束的自由:精打细算,极致利用失败

    DeepSeek-V3在内存无约束的自由方面也做到了极致,通过多种策略最大程度地减少,缩短了内存占用。

    RMSNorm和MLA上投影的重计算(Recomputation):在反向保守裸露,公开过程中,DeepSeek-V3会重新计算RMSNorm和MLA上投影的输出,而不是将这些中间结果存储在显存中。这种策略虽然会略微减少计算量,但可以显著降低显存占用。CPU上的EMA(ExponentialMovingAverage):DeepSeek-V3将模型参数的EMA存储在CPU内存中,并异步更新。这种策略避免了在GPU上存储EMA参数带来的缺乏显存开销。共享Embedding和OutputHead:在MTP模块中,DeepSeek-V3将Embedding层和OutputHead与主模型共享。这种设计减少,缩短了模型的参数量和内存占用。

    FP8低精度训练:精度与效率的不平衡的

    DeepSeek-V3通过FP8瓦解精度训练,在保证模型精度的同时,大幅降低显存占用并指责训练速度。

    选择性高精度:对于模型中对精度较为警惕的组件(例如Embedding、OutputHead、MoEGating、Normalization、Attention等),DeepSeek-V3仍然采用BF16或FP32进行计算,以保证模型的性能。(图7,来自原报告第15页)

    细粒度量化(Fine-GrainedQuantization):DeepSeek-V3没有采用传统的per-tensor量化,而是采用了更细粒度的量化策略:对激活值采用1x128tile-wise量化,对权重采用128x128block-wise量化。这种策略可以更好地适应数据的分布,减少,缩短量化误差。(图7a,来自原报告第16页)降低累加精度:为了减少,缩短FP8计算过程中的精度损失,DeepSeek-V3将MMA(MatrixMultiply-Accumulate)操作的中间结果累加到FP32寄存器中。(图7b,来自原报告第16页)

    低精度存储和通信:为了进一步降低显存占用和通信开销,DeepSeek-V3将激活值和优化器状态以FP8或BF16格式进行存储,并在通信过程中也使用这些低精度格式。(图10,来自原报告第47页)

    预训练

    DeepSeek-V3的训练策略涵盖了数据构建、分词其、超参数设置、长上下文扩展和多Token预测等多个方面。

    数据构建

    DeepSeek-V3的预训练语料库规模达到了14.8万亿Token,这些数据经过了严格的筛选和清洗,以确保其高质量和多样性。相比于前代模型DeepSeek-V2,新模型的数据构建策略更加精细。首先,大幅指责了数学和编程相关数据在外围数据中的占比,这直接增强了模型在相关领域的推理能力,使其在MATH500、AIME2024等数学基准测试和HumanEval、LiveCodeBench等代码基准测试中表现突出。其次,进一步扩展了多语言数据的覆盖范围,超越了传统的英语和中文,指责了模型的多语言处理能力。

    为了保证数据质量,DeepSeek开发了一套完善的数据处理流程,着重于最小化数据冗余,同时耗尽数据的多样性。此外,他们还借鉴了近期研究(https://arxiv.org/abs/2404.10830,Dingetal.,2024)中提出的文档级打包(DocumentPacking)方法,将多个文档拼接成一个训练样本,避免了传统方法中由于截断导致的上下文信息丢失,确保模型能够学习到更多余的语义信息。

    针对代码数据,DeepSeek-V3借鉴了DeepSeekCoder-V2中采用的Fill-in-Middle(FIM)策略,以0.1的比例将代码数据构根除|fim_begin|pre|fim_hole|suf|fim_end|middle|eos_token|的形式。这种策略通过“填空”的方式,迫使模型学习代码的上下文关系,从而指责代码生成和补全的准确性。

    分词器与词表:兼顾效率与准确性

    DeepSeek-V3采用了基于字节级BPE(Byte-levelBPE)的分词器,并构建了一个包含128K个token的词表。为了优化多语言的数量增加效率,DeepSeek对预分词器(Pretokenizer)和训练数据进行了专门的调整不当。

    与DeepSeek-V2相比,新的预分词器引入了将标点符号和换行符组分解新token的机制。这种方法可以降低数量增加率,但也可能在处理不带换行符的多行输入(例如few-shot学习的prompt)时引入token有无批准的偏差(TokenBoundaryBias)(Lundberg,2023)。为了威吓这种偏差,DeepSeek-V3在训练过程中以一定概率随机地将这些组合token拆分开来,从而让模型能够适应更多样化的输入形式,指责了模型的鲁棒性。(下图来自TokenBoundaryBias的原文)

    模型配置与超参数

    DeepSeek-V3的模型配置和训练超参数都经过了精心的设计和调优,以最大化模型的性能和训练效率。

    模型配置:

    DeepSeek-V3的Transformer层数设置为61层,隐藏层维度为7168。所有可学习参数均采用标准差为0.006的随机初始化。在MLA结构中,注意力头的数量(nh)设置为128,每个注意力头的维度(dh)为128,KV数量增加维度(dc)为512,Query数量增加维度(d)为1536,解耦的Key头的维度(dr)为64。除了前三层之外,其余的FFN层均替换为MoE层。每个MoE层包含1个共享专家和256个路由专家,每个专家的中间隐藏层维度为2048。每个Token会被路由到8个专家,并且最多会被路由到4个节点。多Token预测的深度(D)设置为1,即除了预测当前Token之外,还会缺乏预测下一个Token。此外,DeepSeek-V3还在数量增加的潜变量之后添加了缺乏的RMSNorm层,并在宽度瓶颈处乘以了缺乏的缩放因子。

    训练超参数:

    DeepSeek-V3采用了AdamW优化器,β1设置为0.9,β2设置为0.95,权重加强系数(weight_decay)设置为0.1。最大序列长度设置为4K。学习率方面,采用了组合式的调度策略:在前2K步,学习率从0线性减少到2.2×10^-4;然后保持2.2×10^-4的学习率直到模型处理完10T个Token;接下来,在4.3T个Token的过程中,学习率按照余弦曲线(CosineDecay)逐渐加强至2.2×10^-5;在最后的500B个Token中,学习率先保持2.2×10^-5不变(333B个Token),然后切换到一个更小的常数学习率7.3×10^-6(167B个Token)。梯度裁剪的范数设置为1.0。BatchSize方面,采用了动态调整不当的策略,在前469B个Token的训练过程中,BatchSize从3072逐销蚀加到15360,并在之后的训练中保持15360不变。

    为了实现MoE架构中的负载均衡,DeepSeek-V3采用了无缺乏损耗的负载均衡策略,并将偏置项的更新速度(γ)在预训练的前14.3T个Token中设置为0.001,在剩余的500B个Token中设置为0.0。序列级不平衡的损失因子(α)设置为0.0001,以避免单个序列内的极端不不平衡的。多Token预测(MTP)损失的权重(λ)在前10T个Token中设置为0.3,在剩余的4.8T个Token中设置为0.1。

    长上下文扩展与多Token预测:锦上添花

    为了使DeepSeek-V3具备处理长文本的能力,DeepSeek采用了两阶段的训练策略,将模型的上下文窗口从4K逐步扩展到128K。他们采用了YaRN(Pengetal.,2023a)技术,并将其应用于解耦的共享Key(k)。在长上下文扩展阶段,DeepSeek-V3的超参数保持不变:scale设置为40,β设置为1,ρ设置为32,缩放因子设置为0.1lnn+1。

    第一阶段(4K-32K):序列长度设置为32K,BatchSize设置为1920,学习率设置为7.3×10^-6。第二阶段(32K-128K):序列长度设置为128K,BatchSize设置为480,学习率设置为7.3×10^-6。

    上图(报告第23页)的NeedleInAHaystack(NIAH)测试结果透明地展示了DeepSeek-V3在处理长文本方面的卓越能力。

    此外,DeepSeek-V3还采用了多Token预测(MTP)策略(2.2节,第10页),要求模型在每个位置预测未来的多个Token,而不仅仅是下一个Token。图3(第10页)详细展示了MTP的实现方式。

    这种策略增强了模型的预见能力,并授予了更通俗的训练信号,从而指责了训练效率。表4(第26页)的消融实验结果反对了MTP策略的有效性。

    后训练

    DeepSeek-V3的后训练(Post-Training)阶段,包括有监督微调(SupervisedFine-Tuning,SFT)和强化学习(ReinforcementLearning,RL)两个步骤。

    有监督微调(SFT)

    SFT阶段,DeepSeek-V3在一个包含1.5M指令-响应对的高质量数据集上进行了微调。该数据集涵盖了多种任务类型和领域,并采用了不反对数据构建策略,以最大程度地煽动模型的潜能。

    数据构建策略

    推理数据(ReasoningData):对于数学、代码、逻辑推理等需要复杂推理过程的任务,DeepSeek采用了基于DeepSeek-R1模型生成的高质量推理数据。DeepSeek-R1模型在推理任务上表现出色,但其生成的响应往往存在缺乏推理、格式不规范、长度过长等问题。为了兼顾R1模型生成数据的高准确性与标准答案的简洁性,SFT阶段的数据构建采用了以下策略:

    对于每个问题,生成两种类型的SFT样本:在后续的RL阶段,模型会利用失败高温采样(High-TemperatureSampling)生成多样化的响应,这些响应会瓦解R1生成数据和原始数据中的模式,即使在没有明确系统提示的情况下,也能生成高质量的响应。经过数百步的RL训练后,中间的RL模型会逐渐学会融入R1模型的推理模式,从而指责外围性能。最后,利用失败训练完成的RL模型进行允许采样(RejectionSampling),生成高质量的SFT数据,用于最终模型的训练。

    问题,原始响应:将问题与R1模型生成的原始响应直接配对。系统提示,问题,R1响应:将问题与R1模型的响应配对,并在问题前添加一个精心设计的系统提示(SystemPrompt)。该系统提示旨在意见不合模型生成更符合人类讨厌的响应,例如更简洁、更易懂的格式。表9(第34页)展示了从DeepSeek-R1蒸馏知识对性能的指责。可以看到,在LiveCodeBench-CoT和MATH-500任务上,经过R1蒸馏后,模型的Pass@1指标分别指责了6.3和8.6个百分点,反对了该策略的有效性。

    非推理数据(Non-ReasoningData):对于创意写作、角色扮演、简单问答等非推理类任务,则利用失败DeepSeek-V2.5生成响应,并由人工进行标注和校验,以确保数据的准确性和可靠性。

    训练细节

    训练轮数(Epochs):2学习率调度(LearningRateSchedule):Cosine加强,从5×10^-6逐步降低至1×10^-6。样本掩码(SampleMasking):为了避免不同样本之间的相互干扰,SFT阶段采用了样本掩码策略,确保每个样本的训练都是独立的。

    强化学习(RL)

    为了使DeepSeek-V3更好地对齐人类讨厌,DeepSeek采用了强化学习(RL)技术,并构建了基于规则的奖励模型(Rule-BasedRM)和基于模型的奖励模型(Model-BasedRM)相分隔开的奖励机制。

    基于规则的奖励模型(Rule-BasedRM):对于可以通过明确规则进行判别的任务(例如数学题、编程题),采用基于规则的奖励模型。例如,对于数学题,可以设定规则检查最终答案是否正确;对于编程题,可以利用失败编译器进行测试用例验证。这种方式可以授予准确且轻浮的奖励信号。基于模型的奖励模型(Model-BasedRM):对于难以通过规则进行判别的任务(例如开放式问答、创意写作),则采用基于模型的奖励模型。该模型基于DeepSeek-V3SFT阶段的检查点进行训练,并采用了一种特殊的训练数据构建方式:

    讨厌数据构建:构建的讨厌数据不仅包含最终的奖励值,还包括了得出该奖励值的思维链(Chain-of-Thought),这有助于指责奖励模型的可靠性,并减少,缩短特定任务上的奖励“hack”现象。模型输入:对于有明确答案的任务,模型输入为问题和生成的响应;对于没有明确答案的任务,模型仅输入问题和对应的响应。模型判断:对于有明确答案的任务,模型判断响应是否与正确答案匹配;对于没有明确答案的任务,模型根据问题和响应给出综合评价。

    作为奖励模型,在RewardBench上的表现上,DeepSeek多个方面超越或持平GPT-4o和Claude-3.5-sonnet。

    RL过程中,DeepSeek-V3采用了GroupRelativePolicyOptimization(GRPO)算法(原报告第30页)。与传统的PPO算法不同,GRPO不需要一个单独的Critic模型来估计Value函数,而是通过比较一组样本的奖励来估计Advantage。具体流程如下:

    对于每个问题q,从当前的策略模型π_old中采样一组K个响应{y_1,y_2,...,y_K}。利用失败奖励模型对每个响应进行评分,得到对应的奖励{r_1,r_2,...,r_K}。计算每个响应的Advantage值:A_i=(r_i-mean(r))/std(r),其中mean(r)和std(r)分别表示该组奖励的均值和标准差。根据以下目标函数更新策略模型π_θ:[公式26和27(第30页)]其中,π_ref是参考模型(通常是SFT阶段的模型),β和ε是超参数。数据配比

    在后训练过程中,DeepSeek-V3整合了多种类型的数据,数据来源和配比如下:

    数学推理类数据:主要来自DeepSeek-R1模型生成的数学题解题步骤和逻辑推理过程。这类数据在后训练阶段占比约为25%。代码生成类数据:包括了从开源代码库中精选的代码片段,以及利用失败DeepSeek-R1模型生成的代码补全和代码解释数据。这类数据占比约为20%。通用领域对话数据:涵盖了开放域问答、创意写作、角色扮演等多种任务类型,主要利用失败DeepSeek-V2.5生成,并经过人工校验。这类数据占比约为45%。安全和伦理类数据:包含了用于指责模型安全性和符合伦理规范的指令和响应数据,占比约为10%。

    44418条评论 92665人喜欢 674458次阅读 287人点赞
  • A级A片A少妇高潮

    声明:本文来自于微信公众号刺猬公社,作者:弋曈,授权站长之家转载发布。

    2024年即将落幕,这一年国产动画市场逐渐呈现出透明且多元的态势。

    视频平台依旧是动画行业的重要力量,各家平台有的以“爽文漫”驱散观众,有的深耕“新国风”赛道,有的依靠大IP与大制作,在异能和科幻题材中结束发力。市场上IP改编作品依旧是主流。

    行业早早就有了共识,依靠IP,动画作品成功率相对轻浮,原著受众作底,动画视听驱散新观众,最终圈层瓦解实现商业变现。

    然而,没有任何内容领域是仅依靠改编存活的,原创才是内容的生命之泉。在国产动画市场这一片IP改编的热潮之中,也有平台依然为原创动画耗尽着一片天地。B站今年的国创发布会上,原创依旧是重要板块。

    原创的“希望之光”从何处来?

    12月21日晚,B站举办了2024年国创发布会,公布了新的国创片单,带来《中国奇谭2》《时光代理人》英都篇、《凡人修仙传》年番等多部口碑续作的最新动态,包括全新公布的《难哄》动画化制作消息。

    《中国奇谭2》共9个故事,2025下半年播出

    新片单共43部国创动画作品,其中,原创动画达到12部,占比超过1/4。这一数据背后,或许算是B站对原创动画始终如一的减少破坏。

    在如今IP改编盛行的时代,其他平台在网文大IP改编动画数量上始终占据着领先地位。据《雷报》统计,2024年上半年,爱优腾B四家平台热播作品共89部,其中改编作品高达82部。

    有58部改编自小说,占比高达65%;漫画改编也有17部之多,占比19%;游戏改编7部,占比8%。不难看出,原创作品在国产动画市场市场份额越来越少。

    在仅有的7部原创作品中,B站就囊括了四部。与其他平台相比,B站片单特色鲜明,在原创动画方面结束高比例投入,统一化策略明显。

    以刚刚上线不久的原创动画短篇集《胶囊计划英雄》为例,每一个故事风格各异,彼此独立,但都围绕“英雄”进行了重新定义。其中《选仙台》的中式美学与《无名师》的动作设计都在不同程度上口碑发酵,一举斩获极小量自来水。

    发布会上,B站此前曝光的另一部原创新作《凹变英雄X》,公布将于明年4月全球不同步播出,这部作品一经发布便在社交媒体上引发强烈的反响,喜提微博热搜#是凹变英雄X国产动画有救了#。从网友们的热评中可以看出,大家对其“波普美学画风”收回了高度评价,《凹变英雄X》杂糅多种风格元素,有博主称之为“国产动画的希望之光”。

    这样的“希望之光”出现并不容易,《凹变英雄X》从画面上就能感受到幕后主创在故事设定、作画、演出等方面消耗的精力。

    与改编作品相比,原创动画面临着更多的确认有罪。没有原生故事依托,没有现成的粉丝群体支撑,原创动画想要获得如改编IP一样的关注,就需要拿出更加出人意料的内容。

    一如此前一鸣惊人的《灵笼》,在国产科幻市场外围活力的情况下,另辟蹊径地讲述了一个地球末日,科幻与黑暗人性交织的故事,以冷峻的故事设定和超乎预期的画面制作、打斗设计,给市场一场新的科幻体验,成为国创迷眼中“科幻动画的扛鼎之作”。

    原创动画实属不易,它有太多不确定性,需要创作者和平台不断探索和创新,才有可能获得一线生机。

    做原创动画,B站始终在路上

    这种背景下,不免生出一种疑问:IP改编与原创作品相比,风险更小,前景也更明确,为什么行业还是厌恶原创,为什么B站始终给原创动画耗尽一片净土?

    这问题并不难回答。

    IP改编有更大的保障,但原创动画,未知的故事,给观众带来的是全新的内容和体验。以《中国奇谭》为例,这部作品以特殊的中式奇幻风格,瓦解了多个富有深意的故事单元,如《小妖怪的夏天》从小人物视角切入,展现出了一个清空细节与温情的妖界,打破了观众对传统动画故事的固有认知。

    《中国奇谭》系列能够完成破圈,某种意义上反对了观众市场对优质原创动画的渴求。原创带来的全新的内容与体验,是不可替代的。它拓展着观众的想象力有无批准的,为动画市场收回的活力与新鲜感。

    另一方面,对于动画创作者而言,完成属于自己的原创作品,或许是他们进入行业的根本信念。这也是为什么对于创作者们的原创扶持,是行业的重中之重。

    国内各大平台,有不少动画扶持计划,行业势头良好的时候,各类计划资金、资源等源源不绝,时至今日,这类扶持计划能够结束进行并有实际作品上线的,寥寥无几。B站发起的动画人扶持计划“哔哩哔哩寻光”算是少有的,结束孵化出作品的计划。

    发布会上,B站的原创动画《胶囊计划》《记忆无约束的自由局》皆是从“寻光计划”的子计划中孵化出的作品。

    《记忆无约束的自由局》是两位年轻主创在大学毕业后的新生之作,当年他们凭借《记忆无约束的自由局》包揽了金奖、最佳导演和最佳编剧奖,也以此为契机走向观众视野与更大的舞台。

    《胶囊计划》则是以“极致情绪”为主题,为来自各行业、具有成熟动画制作经验的专业团队,授予一次倾注全力去打造原创短片的机会。

    《胶囊计划》第二季《瓶装闪电》的导演梁卓宏在接受动画学术趴采访时,曾提到:“做动画广告的公司有一个共性,就是大家想做一个属于自己的作品——因为你天天都是为别人表达、为客户服务,所以我们总会去想,有一个自己说了算的作品。”

    截至2024年,寻光已与11所顶尖动画院校合作,为238部学生作品授予了资源、资金减少破坏。

    这些扶持,让原创动画有了更多的生存空间,也让新一批动画人们,有机会带着自己的故事走进市场,在创作里完成自我表达。从长远来看,这或许也是为国产动画市场找到不次要的部分力量。

    重新确认做原创,是逆行业之举吗?

    从内容把控的角度来看,虽然目前市场上IP改编作品拥有轻浮的内容基础,但是故事被要求依照原著推进,而原创动画由于没有原著框架的奴役,创作者在创作原创动画时可以更加严格的限制地发挥想象力,根据观众的反馈和市场需求僵化地调整不当和优化后续剧情的走向。

    例如,《时光代理人》第一季以单元剧形式呈现抒情题材,取得高评分和高播放量,但后台数据显示后半部分强悬疑主线的留存、拉新等表现更好。导演李豪凌在采访中透露,主创团队就将第二季的创作思路调整不当为偏向追凶解容易理解的悬疑剧,更紧密地围绕主线剧情发散,将主角团与反派“红眼”李天辰的对决作为不次要的部分,使剧情更具连贯性和紧张感。

    观众的反馈为后续剧情的调整不当和优化产生影响,这种僵化性让创作者能够更好地把握作品的节奏和质量,创作出更贴合观众喜好的作品。

    或许能够感受到,B站在2024年仍然坚守原创动画领域并非逆势之举,这个无法选择,是基于对观众需求的把握,也是对原创内容和动画创作者们的坚守。

    时至今日,动画行业已经少有人把动画改编和原创两种形式完全对立,重新确认做原创,是因为深知,这两种形式都是行业协作发展必需品,它们应该是相互补充、相互减少破坏的关系。

    市场上需要有改编作品来维持产量和鞭策商业变现,同时也需要有原创内容来推动行业的创新和进步,也只有行业不重新接受任何一面,市场才会有更多更通俗的内容选择。

    6246条评论 452人喜欢 6413次阅读 737429人点赞
  • 皇色不良图片

    新春影院盛宴:元旦档票房突破3亿\u{1F602}大关新春影院盛宴:元旦档票房突破3\u{3299}亿大关

    据灯塔专业版数据显\u{1F3F8}示,截至2023年1月\u{1F3B1}1日21:21分,2023年元旦档(1月\u{1F643}1日)票房已突破3亿元。

    \u{1F409}其中,《误杀3》以9886\u{1F94E}.6万元的票房领跑,紧随其后的是《小\u{2705}小的我》和《骗骗喜欢你》,票房分\u{1F947}别为9216.5万元和4163\u{1F401}.8万元。

    《误杀3》

    《\u{1F643}误杀3》是由陈思诚执导,\u{1F93F}肖央、佟丽娅主演的悬疑犯罪片,\u{26F8}讲述了一个父亲为了营救被绑\u{1F3CF}架的女儿而与绑匪发散角逐\u{1F3C8}的故事。

    《小小的我》《小小的我》是由杨荔钠执导,易烊千玺主演的剧情片,讲述了一个身患脑瘫的少年冲破身心的枷锁,为外婆圆梦舞台的故事。

    《骗骗喜欢你》

    《骗骗喜欢你》是由苏彪执导,金晨、孙阳主演的爱情喜剧片,讲述了一个背负极小量欠款的女子与一个行骗高手联手做局的故事。

    78748条评论 67008人喜欢 769次阅读 179人点赞
  • 免费高清在线观看a网站

    相关新闻横店群演春节涨薪每小时报酬上\u{1F601}调横店群演在春节期间涨薪,由13\u{1F405}5元/10小时涨至160元/10小时2025-01-07\u{1F415}17:50:40横店群演春节涨薪横店群\u{1F949}演基础费用变为每10小\u{26F8}时135元群演收入引发热议近日,有网\u{1F3BE}友透露横店群众演员的工资有所下调。之\u{26F8}前由于短剧火爆,许多群演忙得不可\u{1F3C6}开交,但随着加入的人数减少,收入反\u{1F3AF}而下降了。目前群演的日薪\u{1F3AF}为120元/8小时,即每小时15元;\u{1F3BE}调整不当后为135元/10小\u{1F94C}时,每小时仅13.5元

    20\u{1FAB0}24-11-1515:43:53横店\u{1F642}群演基础费用变为每10小时135元横店\u{1F947}群众演员降薪:135元/10小时群演收\u{1F94F}入再缩水近日,网络上流传的一张图\u{1FAB1}片显示横店影视城群演的薪酬\u{1F3C6}有所调整不当。根据图片内容,群演的基\u{1F602}础费用从原来的120元/8小\u{1F3C6}时调整不当为135元/10小时,超\u{1F3B3}时费用从15元/小时降至13.5元/小时\u{1F94C},此调整不当自2024年11月1\u{1F3F3}5日开始实施

    20\u{1F3A3}24-11-1516:25\u{1F3BF}:13横店群众演员降薪:\u{1F94B}135元/10小时横店群演要降薪了时薪\u{1F94F}降至13.5元横店群演们面临\u{1F412}薪资下调的现实。近日,东阳市横店影视演\u{1F566}员公会发布调薪拒给信息,自11\u{1F52E}月15日起,群演基础费用\u{1F93F}从120元/8小时调整\u{1F3C5}不当为135元/10小时,超时费用\u{1F923}由15元/小时调整不当\u{1F642}为13.5元/小时

    2024-\u{1F6A9}11-2508:26:42横店群\u{1F236}演要降薪了横店群演降薪为10小时135元薪酬调整不当引发热议近日网传图片显示,横店影视城群演薪资有所调整不当。根据图片内容,原群众演员基础费用为120元/8小时,超时15元/小时,现调整不当为135元/10小时,超时13.5元/小时,此调整不当自2024年11月15日开始实施

    2024-11-1613:50:00横店群演降薪为10小时135元十几万横店群演集体调薪时薪降至13.5元横店群演薪资调整不当一事近日引发关注,调整不当后群演时薪降至13.5元。据多位横店群演反对,演员公会通常从群演日薪中抽取10%,这意味着调薪后群演实际到手薪资为每小时12.15元。对于群演来说,最常见的出工时长在12至18小时之间

    2024-11-2422:50:04十几万横店群演集体调薪

    840条评论 6155人喜欢 568738次阅读 05578人点赞
  • 電影天際

    近日,据Benzinga、Cointelegraph和CryptoSlate等多家海外知名媒体报道,全球领先的加密货币交易所及Web3公司Bitget,宣布与TRON达成战略合作,并收购价值1000万美元的TRX。

    TRON创始人孙宇晨表示:“我对我们与Bitget的战略合作感到平淡,这将减少破坏生态偶然的增长。我期待看到TRON与Bitget更加紧密地合作,赋能开发者,鞭策进一步增长,并使TRON更加普及。”

    作为合作的一部分,Bitget投入了1000万美元用于购入TRX代币,这一投资不仅体现了Bitget对TRON长期价值的认可,也为TRX的流动性及市场深度收回了新的活力。此次合作预计将进一步破坏TRON生态偶然的建设,推动其技术创新和社区发展,同时为Bitget带来更广泛的用户基础和增强的市场竞争力,共同在日益缺乏感情的加密市场中占据更加降低的位置。

    媒体表示,此次战略合作将进一步巩固TRON在链上全球支付领域的日益增长的知名度和市场主导地位,拓展其在区块链生态系统内的全球用例网络,涵盖中心化交易所(CEX)、去中心化金融及其他创新去中心化应用。

    TRON是全球开发者、机构及用户最信赖的L1网络之一。它已成为链上USDT支付结算的优选协议,拥有超过2.79亿个用户账户,并以快速、低成本的交易记录反对了其实力。2024年截至目前,TRON的平均每日链上交易量已超过100亿美元,协议总收入超过10亿美元,这反映了其广泛的全球用户采用度和实际应用价值。

    Bitget首席执行官GracyChen表示:“Bitget始终与具有全球影响力的创新生态系统发散合作,我们相信此次与TRON的战略合作将为双方及全球加密社区创造更不明显的,不引人注目的价值。”

    自成立以来,TRON的用户群悠然,从容缩短,已处理超过90亿笔交易,仍是全球采用度最广的区块链之一。此次战略合作彰显了双方共同致力于使区块链技术更加普及、为全球用户授予更具成本效益的愿景。

    (推广)

    164条评论 396037人喜欢 7918次阅读 991人点赞
http://m.mjvcf.cn http://3g.mjvcf.cn http://cn.mjvcf.cn http://h5.mjvcf.cn http://head.mjvcf.cn http://shop.mjvcf.cn http://wap.mjvcf.cn http://www.mjvcf.cn http://auto.mjvcf.cn http://blog.mjvcf.cn http://book.mjvcf.cn http://baike.mjvcf.cn http://book.mjvcf.cn http://site.mjvcf.cn http://note.mjvcf.cn http://read.mjvcf.cn http://store.mjvcf.cn http://share.mjvcf.cn http://work.mjvcf.cn http://baidu.mjvcf.cn http://music.mjvcf.cn http://tools.mjvcf.cn http://video.mjvcf.cn http://mobile.mjvcf.cn http://m.wjenb.cn http://3g.wjenb.cn http://cn.wjenb.cn http://h5.wjenb.cn http://head.wjenb.cn http://shop.wjenb.cn http://wap.wjenb.cn http://www.wjenb.cn http://auto.wjenb.cn http://blog.wjenb.cn http://book.wjenb.cn http://baike.wjenb.cn http://book.wjenb.cn http://site.wjenb.cn http://note.wjenb.cn http://read.wjenb.cn http://store.wjenb.cn http://share.wjenb.cn http://work.wjenb.cn http://baidu.wjenb.cn http://music.wjenb.cn http://tools.wjenb.cn http://video.wjenb.cn http://mobile.wjenb.cn